Calc I - Review for exam I

The first exam will be next Tuesday, September 17. Here are some problems that might help.

1. We'd like to estimate

$$
\lim _{t \rightarrow 0} \frac{7^{t}-1}{t}
$$

so we generate the following table:

t	0.1	0.01	0.001	0.0001	0.00001
$f(t)$	2.14814	1.96497	1.94780	1.94610	1.94593

Write down the value of the limit to as many decimal places that you are confident of.
2. Let $f(x)=x^{2}+2 x-1$.
(a) Sketch the graph of f, together with the line tangent to the graph at the point $(0, f(0))$.
(b) Compute the slope of the secant line through the points $(0, f(0))$ and $(2, f(2))$. Draw this line on your graph from part (a).
(c) Write down the difference quotient for f at 0 , i.e. the slope of the secant line through the points $(0, f(0))$ and $(0+h, f(0+h))$.
(d) Compute the limit as $h \rightarrow 0$ of your answer to part (c).
(e) How does your answer to part (d) relate to your sketch from part (a)?
3. Let

$$
f(x)=\frac{(5 x-1)(x-3)}{x^{2}-9}
$$

Evaluate each of the following the limits.
(a) $\lim _{x \rightarrow-1} f(x)$
(b) $\lim _{x \rightarrow-3^{-}} f(x), \lim _{x \rightarrow-3^{+}} f(x)$, and $\lim _{x \rightarrow-3} f(x)$
(c) $\lim _{x \rightarrow 3} f(x)$
4. Figure 1 shows the complete graph of a function f; its domain is $(-1,2]$.
(a) What are $f(1.5)$ and $\lim _{x \rightarrow 1.5} f(x)$?
(b) What are $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$, and $\lim _{x \rightarrow 1} f(x)$?
(c) What can you say about $\lim _{x \rightarrow-1+} f(x)$.
5. Find the derivatives of the following functions, using the definition of the derivative.
(a) $f(x)=2 x^{2}-4 x$
(b) $f(x)=1 / \sqrt{x}$
(c) $f(x)=x^{5}$
6. Find the derivatives of the following functions, using the power rule, sum rule, and/or constant multiple rule.
(a) $f(x)=2 x^{2}-4 x$
(b) $f(x)=1 / \sqrt{x}$
(c) $f(x)=x^{5}$
(d) $f(x)=x^{5}\left(x^{2}-x-1\right)$
(e) $f(x)=\left(x^{2}-x-1\right) / x$
(f) $f(x)=(x-5)^{2}$
(g) $f(x)=(x+2)^{3}$
7. Let $f(x)=x^{2}-x$.
(a) Find the derivative of f.
(b) Write down and equation for the tangent line at $x=2$.
8. If f and g are differentiable function, prove that

$$
\frac{d}{d x}(2 f(x)+3 g(x))=2 f^{\prime}(x)+3 g^{\prime}(x)
$$

9. Write down a complete sentence referring to the intermediate value theorem showing that the function $f(x)=x^{7}+x^{3}+x+1$ has a root in the interval $(-1,1)$.
10. The complete graph of a function f is shown in figure 2; it consists of a line segment, a quarter-circle, and a semi-circle. Sketch the graph of f^{\prime}.

Figure 1: The graph for problem 6

Figure 2: The graph for problem 11

