Calc I - Review for exam II

The first exam will be next Tuesday, October 22. Here are some problems that might help.

1. Find the derivatives of the following functions.
(a) $f(x)=\tan (x)+\sec (x)+\ln (x)+\arcsin (x)+\arctan (x)$
(b) $f(x)=x \ln (3 x)$
(c) $f(x)=\tan (2 x) \arctan \left(x^{2}\right)$
2. Use the definition of the derivative to show that

$$
\frac{d}{d x} x^{3} f(x)=3 x^{2} f(x)+x^{3} f^{\prime}(x)
$$

3. In this problem, we'd like to prove that

$$
\frac{d}{d x} \cos (x)=-\sin (x)
$$

using the definition of the derivative.
(a) Write down the difference quotient for the cosine.
(b) Use a trig identity to expand the $\cos (x+h)$ in your difference quotient.
(c) Rearrange your expanded difference quotient so that you can take the necessary limits.

Note that you may assume the following facts:

- $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$.
- $\lim _{\theta \rightarrow 0} \sin (\theta) / \theta=1$
- $\lim _{\theta \rightarrow 0}(\cos (\theta)-1) / \theta=0$

4. Use the formula for the derivatives of the sine and cosine together with the combination rules for differentiation to establish the following formulae.
(a) $\frac{d}{d x} \tan (x)=\sec ^{2}(x)$
(b) $\frac{d}{d x} \sec (x)=\sec (x) \tan (x)$.
5. Use the fact that $\lim _{\theta \rightarrow 0} \sin (\theta) / \theta=1$ to compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$
(b) $\lim _{x \rightarrow 0} \frac{x}{\tan (2 x)}$
(c) $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$
6. Use logarithmic differentiation to compute the following derivatives.
(a) $\frac{d}{d x} 3^{x}$
(b) $\frac{d}{d x} x^{x}$
(c) $\frac{d}{d x} \sin (x)^{\cos (x)}$
7. Compute the derivative of the arccosine using the following recipe.
(a) Write $y=\arccos (x)$, apply the cosine to both sides, and simplify.
(b) Apply implicit differentiation to your response to part (a) and solve for y^{\prime} in terms of y.
(c) Express your solution to the previous part in term of x.
8. Consider the equation $x^{3}+2 x y+y^{4}=4$. Find an equation of the line that is tangent to the graph of this curve at the point $(1,1)$.
9. Find the absolute maximum and absolute minimum values of $f(x)=x^{3}-12 x+1$ on $[0,3]$.
10. Let $f(x)=x^{3}+3 x^{2}-24 x-1$.
(a) Use the first derivative to find maximal intervals on which f is increasing or descreasing.
(b) Use the second derivative to find maximal intervals on which f is concave up or concave down.
(c) Use the information from the previous two parts to sketch a graph of f.
11. Let $f(x)=x e^{-x^{2}}$. A graph of f is shown in figure 1 .
(a) Find the exact locations of the absolute maximum and minimum of f.
(b) Find the exact locations of the inflection points of f,

Figure 1: The graph of $f(x)=x e^{-x^{2}}$

