Normal Integrals

Figure 1: A normal integral
In statistics, we learn that data can often be analyzed using a normal model. For example, we can quantify how strong a score of 700 on the SAT or how tall the average NBA player is relative to the population since the data is normally distributed. In that context, we often compute a so-called Z-score using a formula like

$$
Z=\frac{X-\mu}{\sigma} .
$$

The point behind that formula is that it relates a normally distributed random variable X with mean μ and standard deviation σ to the standard normal with mean 0 and standard deviation 1. Ultimately, this formula arises from a change of the bounds of integration that arise when we perform u-substitution on a normal integral.

Normal random variables

In statistics, we learn that a lot of data is normally distributed and that probabilities associated with that data can be looked up in a normal table, like this or this. If Z represents a random variable with a standard normal distribution, we can compute the probability that Z lies between 0 and a (written as $P(0<Z<a)$) just by looking the value up in the table. For example, if $a=2$, then according
to the tables,

$$
P(0<Z<2) \approx 0.4772
$$

We also learn in statistics that there is a mysterious curve, the so-called normal curve, that allows these types of computations to be visualized in terms of area under that curve. The curve for this particular example is shown in Figure 2.

Figure 2: The normal integral for $P(0<Z<2)$
The symmetry of this curve allows us to compute normal probabilities that don't have zero as the lower bound. For example,

$$
P(-1<Z<2)=P(0<Z<1)+P(0<Z<2)=0.3413+0.4772=0.8185
$$

This is illustrated in figure 3.

Figure 3: The normal integral for $P(-1<Z<2)$
The difficulty is that those tables only work for the standard normal, which assumes mean $\mu=0$ and standard deviation $\sigma=1$. What do we do when the mean or standard deviation are different? That's where the Z-score comes in. Assuming that X is normally distributed with mean μ and standard deviation σ, we learn in statistics that

$$
P(a<X<b)=P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)
$$

Example: By design, SAT scores are normally distributed with mean 500 and standard deviation 100. If we pick a student at random, what is the probability that their SAT score is less than 700 ?

Solution: We first compute the Z-score of 700 relative to the mean of $\mu=500$ and standard deviation of $\sigma=100$. That is:

$$
Z=\frac{700-500}{100}=2 .
$$

Refferring to the standard normal table, we again find that $P(0<Z<2) \approx$ 0.4772 . By symmetry, $P(-\infty<Z<0)=1 / 2$. Thus,

$$
P(-\infty<Z<2) \approx 0.9772
$$

This is illustrated in figure 4 . We could interpret this to mean that a score of 700 should put us at nearly the $98^{\text {th }}$ percentile.

Figure 4: The normal integral for $P(-\infty<Z<2)$

The normal curve

It turns out that there's a very specific formula for the normal curve, namely:

$$
f_{\mu, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

You can plot these things on Desmos.
The standard normal distribution arises when $\mu=0$ and $\sigma=1$; thus, it has formula

$$
f_{0,1}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

When a statistician tells us that a normal probability can be visualized in terms of area under a normal curve, they mean that

$$
P(a<Z<b)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x
$$

Unfortunately, this integral cannot be evaluated in closed form; it must be estimated using numerical techniques. That's exactly the point behind the normal table.

When a statistician tell us that

$$
P(a<X<b)=P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right),
$$

what they really mean is that

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{a}^{b} e^{-\frac{(x-\mu)^{2}}{\sigma^{2}}} d x=\frac{1}{\sqrt{2 \pi}} \int_{(a-\mu) / \alpha}^{(b-\mu) / \sigma} e^{-x^{2} / 2} d x
$$

We can use u-substitution to verify this. By writing the exponent of the integrand as

$$
-\frac{(x-\mu)^{2}}{2 \sigma^{2}}=-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}
$$

we are led to the substitution $u=(x-\mu) / \sigma$. Then, $d u=\frac{1}{\sigma} d x$ so

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi} \sigma} \int_{a}^{b} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x & =\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \frac{1}{\sigma} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{(a-\mu) / \alpha}^{(b-\mu) / \sigma} e^{-x^{2} / 2} d x
\end{aligned}
$$

Example: Express the normal integral

$$
\frac{1}{\sqrt{2 \pi} 3} \int_{-2}^{1} e^{-(x+2)^{2} / 18} d x
$$

as a standard normal integral.
Solution: Writing the exponent of the integrand as

$$
-\frac{(x+2)^{2}}{18}=-\frac{1}{2}\left(\frac{x+2}{3}\right)^{2}
$$

we are led to the substitution $u=(x+2) / 3$. Then, $d u=\frac{1}{3} d x$ so

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi} 3} \int_{-2}^{1} e^{-\frac{(x+2)^{2}}{2 \times 3^{2}}} d x & =\frac{1}{\sqrt{2 \pi}} \int_{-2}^{1} e^{-\frac{1}{2}\left(\frac{x+2}{3}\right)^{2}} \frac{1}{3} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{(-2+2) / 3}^{(1+2) / 3} e^{-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-x^{2} / 2} d x
\end{aligned}
$$

Problems

1. Referring to a table of standard normal integrals, compute the following:
a) $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.3} e^{-x^{2} / 2} d x$
b) $\frac{1}{\sqrt{2 \pi}} \int_{-0.4}^{1.3} e^{-x^{2} / 2} d x$
c) $\frac{1}{\sqrt{2 \pi}} \int_{0.4}^{1.3} e^{-x^{2} / 2} d x$
2. Using u-substitution, convert the following normal integrals into standard normal integrals. Then evaluate the integral using the table on the last page or your favorite numerical integrator.
a) $\frac{1}{\sqrt{2 \pi} 2} \int_{0}^{1} e^{-(x-1)^{2} / 8} d x$
b) $\frac{1}{\sqrt{2 \pi} 4} \int_{12}^{18} e^{-(x-10)^{2} / 32} d x$
3. Given that

$$
\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-x^{2} / 2} d x=\frac{1}{2}
$$

show that

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mu}^{\infty} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x=\frac{1}{2}
$$

for all $\mu \in \mathbb{R}$ and $\sigma>0$.

